Types of Renewable Energy GAFO Currently Provides:

Water/Hydro Power:

Moving water has kinetic energy. This can be transferred into useful energy in different ways. Hydroelectric power (HEP) schemes store water high up in dams. The water has gravitational potential energy which is released when it falls. 

• The Dam is built to retain the water. More electricity is produced if the water is more in the reservoir

• Sluice Gates: These can open and close to regulate the amount of water that is released into the pipes.

• Potential energy in the retained water is transferred into kinetic energy by water flowing through the pipes with high speed.

The force and high pressure in the water turns a series of shafts in a generator. Spinning shafts in the generator charges millions of coils and magnets to create electricity, which is regulated by a transformer. This is then transported via cables to homes and factories.

To build a dam there has to be valleys and rivers that flow all year round. This will help with the building and success of the dam. This way, the fullest effect of the waters kinetic energy can be tapped.

Coal Energy:

Steam coal, also known as thermal coal, is used in power stations to generate electricity. Coal is first milled to a fine powder, which increases the surface area and allows it to burn more quickly. In these pulverised coal combustion (PCC) systems, the powdered coal is blown into the combustion chamber of a boiler where it is burnt at high temperature (see diagram). The hot gases and heat energy produced converts water – in tubes lining the boiler – into steam.

The high pressure steam is passed into a turbine containing thousands of propeller-like blades. The steam pushes these blades causing the turbine shaft to rotate at high speed. A generator is mounted at one end of the turbine shaft and consists of carefully wound wire coils. Electricity is generated when these are rapidly rotated in a strong magnetic field. After passing through the turbine, the steam is condensed and returned to the boiler to be heated once again.

The electricity generated is transformed into the higher voltages (up to 400,000 volts) used for economic, efficient transmission via power line grids. When it nears the point of consumption, such as our homes, the electricity is transformed down to the safer 100-250 voltage systems used in the domestic market.


The most widely used form of renewable energy is biomass. Biomass simply refers to the use of organic materials and converting them into other forms of energy that can be used. Although some forms of biomass have been used for centuries – such as burning wood – other, newer methods, are focused on methods that don’t produce carbon dioxide.

For example, there are clean burning biofuels that are alternatives to oil and gas. Unlike fossil fuels, which are produced by geological processes, a biofuel is produced through biological processes – such as agriculture and anaerobic digestion. Common fuels associated with this process are bioethanol, which is created by fermenting carbohydrates derived from sugar or starch crops (such as corn, sugarcane, or sweet sorghum) to create alcohol.

Another common biofuel is known as biodiesel, which is produced from oils or fats using a process known as transesterification – where acid molecules are exchanged for alcohol with the help of a catalyst. These types of fuels are popular alternatives to gasoline, and can be burned in vehicles that have been converted to run on them.


Solar power (aka. photovoltaics) is one of the most popular, and fastest-growing, sources of alternative energy. Here, the process involves solar cells (usually made from slices of crystalline silicon) that rely on the photovoltaic (PV) effect to absorb photons and convert them into electrons. Meanwhile, solar-thermal power (another form of solar power) relies on mirrors or lenses to concentrate a large area of sunlight, or solar thermal energy (STE), onto a small area (i.e. a solar cell).

Initially, photovoltaic power was only used for small to medium-sized operations, ranging from solar powered devices (like calculators) to household arrays. However, ever since the 1980s, commercial concentrated solar power plants have become much more common. Not only are they a relatively inexpensive source of energy where grid power is inconvenient, too expensive, or just plain unavailable; increases in solar cell efficiency and dropping prices are making solar power competitive with conventional sources of power (i.e. fossil fuels and coal).

Today, solar power is also being increasingly used in grid-connected situations as a way to feed low-carbon energy into the grid. By 2050, the International Energy Agency anticipates that solar power – including STE and PV operations – will constitute over 25% of the market, making it the world’s largest source of electricity (with most installations being deployed in China and India).

Wind Power:

Wind power has been used for thousands of years to push sails, power windmills, or to generate pressure for water pumps. Harnessing the wind to generate electricity has been the subject of research since the late 19th century. However, it was only with major efforts to find alternative sources of power in the 20th century that wind power has become the focal point of considerable research and development.

Compared to other forms of renewable energy, wind power is considered very reliable and steady, as wind is consistent from year to year and does not diminish during peak hours of demand. Initially, the construction of wind farms was a costly venture. But thanks to recent improvements, wind power has begun to set peak prices in wholesale energy markets worldwide and cut into the revenues and profits of the fossil fuel industry.


Geothermal electricity is another form of alternative energy that is considered to be sustainable and reliable. In this case, heat energy is derived from the Earth – usually from magma conduits, hot springs or hydrothermal circulation – to spin turbines or heat buildings. It is considered reliable because the Earth contains 1031 joules worth of heat energy, which naturally flows to the surface by conduction at a rate of 44.2 terawatts (TW) – more than double humanity’s current energy consumption.

One drawback is the fact that this energy is diffuse, and can only be cheaply harnessed in certain locations.

However, in certain areas of the world, such as Iceland, Indonesia, and other regions with high levels of geothermal activity, it is an easily accessible and cost-effective way of reducing dependence on fossil fuels and coal to generate electricity. Countries generating more than 15 percent of their electricity from geothermal sources include El Salvador, Kenya, the Philippines, Iceland and Costa Rica.

Renewable energy is becoming an increasingly important issue in today’s world. In addition to the rising cost of fossil fuels and the threat of Climate Change, there has also been positive developments in this field which include improvements in efficiency as well as diminishing prices.

All of this has increased the demand for alternative energy and accelerated the transition towards cleaner, more sustainable methods of electrical power. However, it is important to note that are many kinds – biomass, solar, wind, tidal, and geothermal power – and that each has its own share of advantages and drawbacks.